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Outline
• Review boundary-value problems

– Shoot and try
– Finite Differences
– Thomas Algorithm

• Other boundary values
– Gradient boundary values
– Mixed boundary values

• Eigenvalue problems
– Source of such problems
– Solution methods

Review Last Lecture
• In a boundary-value problem, we have 

conditions set at two different locations
• A second-order ODE d2y/dx2 = g(x, y, 

y’), needs two boundary conditions
– Simplest are y(0) = a and y(L) = b

– Can also have ady/dx+by = c at x = 0, L

• Two solution approaches:
– Shoot-and-try

– Finite differences
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Shoot-and-Try Approach

• Take an initial guess of derivative boundary 
conditions at x = 0 and use an initial-value 
routine to get y(comp)(L) at the other 
boundary

• Compare the value of y(comp)(L) found from 
the previous step to the boundary condition 
on y(L)

• Use the difference between y(comp)(L) and 
y(L) to iterate the initial value of z = 
dy/dx|x=0 and continue until y(comp)(L)  y(L)
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Shoot-and-Try Example

• Solve d2y/dx2 +16sin(y2) = 0 with y = 1 
at x = 0 and x = L = 1

• Must find pair of first order equations
– Set dy/dx = z as one ODE

– Original ODE becomes dz/dx = –16sin(y2)

– We know y(0) = 1, but we need z(0) guess 
z(0)(0) = [y(L) – y(0)]/L = (0 – 1)/1 = –1 

• This z(0)(0) gives y(1) = –0.6824 (RK4, h = .01)

• Try z(1)(0) = [y(L) – y(0)(L) – y(0)]/L = [1 –
(–0.6824) – 0] = –0.3176

5
E(0) = y(0)(L) – y(L) = –0.6824 – 0 = -0.6824

6



More Boundary-value Problems and 
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering 
Analysis Page 2

Shoot-and-Try Linear ODEs

• For a linear ODE the solution can be 
found on the third iteration
– Complete two shoot-and-try solutions,     

y(0)(x) and y(1)(x) and  for two initial 
guesses, z(0)(x0) and z(1)(x0)
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Finite Difference Approach
• Define uniform or non-uniform grid; 

uniform is easier and has higher order 
truncation error; note: h = (xN – x0)/N

●-----●--------●-------------●~ ~●-------●---●
x0 x1 x2 x3 xN-2 xN-1 xN

• At each node write finite-difference 
equivalent to differential equation

• Handle boundary conditions at x0 and xN
(simplest if y0 = y(0) and yN = y(L) given, 
but can have gradient boundaries)
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Finite-Difference Example

• Solve d2T/dx2 + a2T = 0 

• Finite difference equation at node i

• [d2T/dx2 + a2T]i = (Ti+1 + Ti-1 – 2Ti)/h2 + 
a2Ti + O(h2) = 0

• Ignore truncation error and get finite-
difference equation system

• Ti+1 + Ti-1 – 2Ti + h2a2Ti = 0

• Have N+1 nodes numbered from 0 to N 
with boundary conditions at 0 and N

Ignore truncation error
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Tridiagonal Matrix Equations
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• Finite-difference equations in matrix 
form with  = a2h2 have tridiagonal form 
solved by Thomas Algorithm used with 
cubic spline
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Error and Error Order
• Get overall measure of error (like norm 

of a vector)
• Typically use maximum error (in 

absolute value) or root-mean-squared 
(RMS) error

• N = 10 has max = 2.42x10-3 and RMS = 
1.83x10-3.  For N = 100, max = 2.41x10-5 

and RMS = 1.73x10-5.
• Second-order error in solution
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Boundary Gradients
• Use second-order derivative expressions

h
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x -qexact/k h -q/k Error

0 2.1995 .1 2.2357 .03618

0 2.1995 .01 2.1999 .00036

1 -.9153 .1 -.9332 .01786

1 -.9153 .01 -.9155 .00021
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Thomas Algorithm
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• General format for tridiagonal equations
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Thomas Algorithm II
































































































N

N

N

NN

F

F

F

F

F

x

x

x

x

x

E

E

E

E

1

2

1

0

1

2

1

0

1

2

1

0

100000

10000

001000

00100

00010

00001





















• Gauss elimination upper triangular form

Have to find Ei and Fi
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Thomas Algorithm III
• Forward computations

– Initial: E0 = – C0 / B0 F0 = D0 / B0

– Apply equations below for i = 1,… N-1: 

– At final point
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• Back substitute: xi = Fi + Eixi+1
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Other Boundary Conditions

• General condition a dT/dx + bT = c
– a = 1, b = 0 for Neumann (gradient given)

– a = 0, b = 1 for Dirichlet (value given)

– Write gradient using second order forward 
(x = x0) or backward difference (x = xN)

– Combine with equation for first node in 
from the boundary to eliminate term with 
second node from boundary

– Result conforms to tridiagonal system
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General Boundary Example

• Look at x = x0 boundary; results for x = 
xN follow similar derivation
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General Boundary Example II

• Equation just derived is seen to give 
correct Dirichlet result for a0 = 0, b0 = 1

NN
N

N
N

N cy
h

a
y

h

a
b 









  12

)2(

2

2 

• Similar derivation at x = xN gives
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• Equations shown here will work for a = 0 
or b = 0, but at least one must be nonzero
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Nonlinear Problems

• Shoot-and-try requires no special 
procedures for nonlinear problems

• For finite difference or finite elements, 
solve a linearized equation
– Example is pendulum equation d2/dt2 =   

(-g/l) sin  (usually solved with sin   )

– Taylor series: sin  = sin 0 + [d(sin )/d]0
( – 0) = sin 0 + cos 0 ( – 0)

– Replace sin  by linear result to iterate
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Nonlinear Example

• Start with d2/dt2 = (-g/l) sin 
• Replace sin  by linearized series

• Write in iterative form with (m+1) as new 
iteration and use (m) in nonlinear terms

• d2(m+1)/dt2 = (-g/l) [sin (m) + cos (m)

((m+1) – (m))

• Define 2 = g/l and rearrange
d2(m+1)/dt2 + 2(m+1) cos (m) = –2 [sin (m) –
(m)cos (m)] = r
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Nonlinear Example II

• Convert d2(m+1)/dt2 + 2(m+1) cos (m) = 
r to (linear) finite-difference form in (m+1)
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Nonlinear Example III

• Make initial guesses for (0)

– Linear profile (0)(t) = (0) + [(L) – (0)]t/T

• Find all nodal values for (1) using (0) to 
compute the nonlinear terms

• Repeat the process until the differences 
between iterations is good enough
– Compute residuals to test convergence
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Handling Boundary Conditions

• We have used an example problem with 
fixed (Dirichlet) boundary conditions

• We also mentioned gradient (Neumann)  
and mixed boundary conditions.

• If the dependent variable is u and the 
initial and final nodes in a finite-
difference grid are 0 and N the fixed 
boundary conditions are u0 = C0 at x = 
x0 and uN = CN at x = xN

23

Gradient and Mixed Boundaries

• We use a directional derivative to 
represent boundary gradients

ݑ݀
ݔ݀
቉
௫ୀ଴

ൌ
െ3ݑ଴ ൅ ଵݑ4 െ ଶݑ

ݔ∆2
ݑ݀
ݔ݀
቉
௫ୀே

ൌ
ேݑ3 െ ேିଵݑ4 ൅ ேିଶݑ

ݔ∆2

• Couple this boundary condition equation 
with first (last) possible finite difference 
equation at x = x0 and x = xN

24
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Gradient Boundary at x = x0

• Finite-difference equation for d2y/dx2 –
ay = 0 is (ui+1 – 2ui + ui-1)/h2 + a2ui = 0
– Write this as ui+1 + ui + ui-1 = 0 where  = 

h2a2 – 2 

– First (x = 0) equation is u2 + u1 + u0 = 0

– Gradient at x = 0: 2xg0 = -3u0 + 4u1 – u2

– Combine these to get 2xg0 = -3u0 + 4u1 –
u2 = -3u0 + 4u1 + (u1 + u0) = (4 + )u1–2u0

– For TDMA solution combined equation [-2u0

+ (4 + )u1 = 2xg0] is first; previous first 
25equation,u2 + au1 + u0 = 0, is second

Gradient Boundary at x = xN

• Start with same finite-difference equation  
ui+1 + ui + ui-1 = 0 where  = h2a2 – 2 
– Last (x = xN) equation is uN + uN-1 + uN-2 = 0

– Gradient at x = xN: 2xgN = 3uN – 4uN-1 + uN-2

– Combine these to get 2xgN = 3uN – 4uN-1 + 
uN-2 = 3uN – 4uN-1 – (uN-1 + uN) = –(4 + )uN-1 

+ 2uN

– For TDMA solution combined equation [2uN –
(4 + )uN-1 = 2xgN] is last; previous last 
equation,uN-2+uN-1+ uN = 0, is second-to-last 
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Mixed Boundary Condition

• Mixed boundary condition relates 
boundary gradient to boundary value of 
dependent variable

• Common example is convection heat 
transfer boundary condition: 
– At x = x0: –k(dT/dx) = h(T∞ – T)

– At x = xN: –k(dT/dx) = h(T – T∞)

– Use forward/backward expression for 
gradients

27

Mixed Boundary Condition II

• For x = x0: –k(dT/dx) = h(T∞ – T) with 
forward difference becomes

െ݇ ିଷ బ்ାସ భ்ି మ்

ଶ∆௫
ൌ h ஶܶ െ ଴ܶ

• For x = xN: –k(dT/dx) = h(T – T∞) with 
backward difference becomes  

െ ݇ ଷ்ಿିସ்ಿషభା்ಿషమ
ଶ∆௫

ൌ h ேܶ െ ஶܶ

• Combine with finite difference equations: 
T2 + T1 + T0 = 0 / TN-2 + TN-1 + TN = 0

28

Mixed Boundary at x = x0

• Finite-difference: T2 + T1 + T0 = 0

• Boundary: െ݇ ିଷ బ்ାସ భ்ି మ்

ଶ∆௫
ൌ h ஶܶ െ ଴ܶ

• െ3 ଴ܶ ൅ 4 ଵܶ െ ଶܶ ൌ െ2݄∆ݔ ஶܶ െ ଴ܶ ݇⁄
• െ3 ଴ܶ ൅ 4 ଵܶ ൅ ߙ ଵܶ ൅ ଴ܶ ൌ െ2݄∆ݔ ஶܶ െ ଴ܶ ݇⁄

• െ 2 ൅ ଶ௛∆௫

௞ ଴ܶ ൅ 4 ൅ ߙ ଵܶ ൌ
ିଶ௛∆௫ ಮ்

௞

• This becomes the first equation in the TDMA 
algorithm and the first finite-difference equa-
tion above becomes the second
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Mixed Boundary at x = xN

• Finite-difference: TN-2 + TN-1 + TN = 0

• Boundary: െ݇ ଷ்ಿିସ்ಿషభା்ಿషమ
ଶ∆௫

ൌ h ேܶ െ ஶܶ

• 3 ேܶ െ 4 ேܶିଵ ൅ ேܶିଶ ൌ െ2݄∆ݔ ேܶ െ ஶܶ ݇⁄
• 3 ேܶ െ 4 ேܶିଵ െ ߙ ேܶିଵ െ ேܶ ൌ െ2݄∆ݔ ேܶ െ ஶܶ ݇⁄

• 2 ൅ ଶ௛∆௫

௞ ேܶ െ 4 ൅ ߙ ேܶିଵ ൌ
ଶ௛∆௫ ಮ்

௞

• This becomes the last equation in the TDMA 
algorithm and the first finite-difference equa-
tion above becomes the second-to-last

30
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Eigenvalue Problems

• Numerical eigenvalue problems occur 
when the number of boundary 
conditions is greater than the order of 
the differential equation
– Example of this is solution for burning 

velocity of a laminar flame

• Basic approach is to use finite-
differences and transform problem into 
a numerical matrix eigenvalue problem

32

Eigenvalue Problems II

• Look at simple problem with known 
solution as an example
– d2y/dx2 + 2y = 0 with y(0) = 0, y(1) = 0 and 
01ydx = 1

– Have three boundary conditions and only a 
second order equation

– Nontrivial solution: y = A sin x with  = n

• Use second order finite differences
– (yi+1 + yi-1 – 2yi)/h2 + 2yi = 0
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Eigenvalue Problem III
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• Finite-difference equations in matrix 
form with  = 2h2; what is solution?
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Eigenvalue Problem IV
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
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


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











• Have matrix eigenvalue problem with 
= -2h2 as the eigenvalue
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Eigenvalue Problems V

• Solve by numerical techniques for 
finding matrix eigenvalues

• The accuracy of the eigenvalues 
depends on the grid

• Often need only one (lowest or highest)

• Can only find as many eigenvalues as 
there are grid nodes (not counting 
boundary nodes)
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Example Eigenvalue Problem

• ODE: d2y/dx2 + k2y = 0 with y(0)=y(1)=0

• k is an unknown parameter (eigenvalue) 

• Solution is y = Asin(kx) where k = n
• Solve with x = 0.2

• Finite difference equation is
௬೔శభା୷౟షభିଶ୷౟

୼୶ మ ൅ ݇ଶy୧ ൌ 0

௜ାଵݕ ൅ y୧ିଵ െ 2 െ Δݔ ଶ݇ଶ y୧ ൌ 0

• Write as matrix equation for x = 0.2
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Example Eigenvalue Problem II

• This is eigenvalue equation (A – I)y = 0

• Here  = 0.04k2

• Det(A – I) = 0 is (2 – 0.04k2)4 – 3(2 –
0.04k2)2 +1 = 0 

• Numerical solutions for k compared to 
exact values on next slide

2 െ 0.04kଶ െ1
െ1 2 െ 0.04kଶ

0																	 0
െ1																				 0

0											 				െ1
0											 								0

2 െ 0.04kଶ െ1
െ1 2 െ 0.04kଶ

ଵݕ
yଶ
yଷ
yସ

ൌ

0
0
0
0
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Example Eigenvalue Problem III

Eigenvalues Percent

Numerical Exact error

3.090 3.142 1.66%

5.878 6.283 6.45%

8.090 9.425 14.16%

9.511 12.566 24.31%

Joe D. Hoffman, Numerical methods for Engineers and 
Scientists, (2nd ed), Marcel Dekker (2001), p. 482.

• Note larger errors for higher eigen-
values

MATLAB ODE Eigenvalues

• MATLAB has two solvers bvp4c and 
bvp5c for solving boundary-value ODEs

• MATLAB documentation shows the use 
of bvp4c for computing the eigenvalue 
of an ODE
– https://www.mathworks.com/help/matlab/re

f/bvp4c.html
• Example shows the computation of a single 

eigenvalue as unknown parameter in the 
solution based on initial guess of eigenvalue
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