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* Review boundary-value problems
— Shoot and try
— Finite Differences
— Thomas Algorithm
+ Other boundary values
— Gradient boundary values
— Mixed boundary values
 Eigenvalue problems
— Source of such problems
— Solution methods
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Review Last Lecture

* In a boundary-value problem, we have
conditions set at two different locations
A second-order ODE d2y/dx2 = g(x, V,
y’), needs two boundary conditions
— Simplest are y(0) =aand y(L) =b
— Can also have ady/dx+by =catx=0, L
» Two solution approaches:
— Shoot-and-try
— Finite differences

Cabiforni State Unhersity
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Shoot-and-Try Approach

* Take an initial guess of derivative boundary
conditions at x = 0 and use an initial-value
routine to get y.omp(L) at the other
boundary

+ Compare the value of y ;ymp,(L) found from
the previous step to the boundary condition
on y(L)

* Use the difference between y;my(L) and
y(L) to iterate the initial value of z =
dy/dx|s-o and continue until ygomq (L) = y(L)

Calbiforni State University
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Shoot-and-Try Example

* Solve d2y/dx2 +16sin(y2) = 0 with y = 1
atx=0andx=L=1

* Must find pair of first order equations
— Set dy/dx = z as one ODE
— Original ODE becomes dz/dx = —16sin(y?)

—We know y(0) = 1, but we need z(0) guess
z0(0) = [y(L) - y(O)yL = (0 - 1)/1 = -1

« This z©)(0) gives y(1) = —0.6824 (RK4, h = .01)
* Try z((0) = [y(L) — yO(L) - y(O)/L =[1 —

(—0.6824L—\0];—0.3176
Northridge E© =yO{Y— y(L) = —-0.6824 — 0 = -0.6824 °
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Shoot-and-Try Iterations
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Eigenvalue Problems in ODEs

Shoot-and-Try Linear ODEs

 For a linear ODE the solution can be
found on the third iteration
— Complete two shoot-and-try solutions,
yO)(x) and y"(x) and for two initial
guesses, zO)(x,) and z(M(x,)

il .’:r;lﬁ:lll-l‘:unw'_-
Northridge

Finite Difference Approach

+ Define uniform or non-uniform grid;
uniform is easier and has higher order
truncation error; note: h = (xy — X)/N

o-—-- ° ° o~ ~e0 o---0

Xo X4 Xy X3 XNz XN Xy

+ At each node write finite-difference
equivalent to differential equation

» Handle boundary conditions at x, and xy
(simplest if y, = y(0) and yy = y(L) given,
but can have gradient boundaries)

ak .’:r;lﬁ:lll-l‘:ul‘w'.- 8
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Finite-Difference Example

* Solve d?T/dx? + a’T =0
+ Finite difference equation at node i
o [d2T/dx? + @2T]; = (T, + Ty — 2T)/h2 +

aT, +-= 0}l 1gnore truncation error

+ Ignore truncation error and get finite-
difference equation system

e Ty + Ty —2T;+ h2a%T, =0

* Have N+1 nodes numbered from 0 to N
with boundary conditions at 0 and N

il .’:r;lﬁ:lll-l‘:unw'_-
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[—2+a 1 0 0 - 0 o TT7 [-T.]
1 —24a¢ 1 0 = 0 0o |, 0
0 1 -2+ 1 - 0 o | T 0
0 0 1 : : N
: : D0 e —2+a 1 |Ty,| |0
0 0 0 0 « 1 —2+a|T] |-T,

Tridiagonal Matrix Equations

« Finite-difference equations in matrix
form with o = a%h? have tridiagonal form
solved by Thomas Algorithm used with
cubic spline

Cak .’:r;lﬁ:lll-l‘:unw'_-
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Error and Error Order

» Get overall measure of error (like norm
of a vector)

 Typically use maximum error (in
absolute value) or root-mean-squared
(RMS) error

* N =10 has gn,, = 2.42x103 and egys =
1.83x103. For N =100, g, = 2.41x105
and egys = 1.73x105.

» Second-order error in solution

18, [1& ,
Cabiforni State | :||I1N'.-‘5‘RMS = ﬁ ;gi = N ; (Texact _Tnumerical )i11

Northridge

Boundary Gradients
* Use second-order derivative expressions
a7 —3T, +4T,-T,
Qo=—K—| =k—"F—=—+
X [y, 2h
q _ 9T ST AT+ T
N dx| ., 2h

X| -Oexac/k| h -g/k|  Error
0 1] 2.2357| .03618
0| 2.1995| .01| 2.1999| .00036
1
1

N
=N
[{e]
(<]
(&)}
N

-9153| 1| -9332| 01786
-9153| 01| -9155| 00021,

ak .’:r;lﬁ:lll-l‘:unw'_-
Northridge
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Thomas Algorithm

» General format for tridiagonal equations
_BO Co 0 0o - 0 o X,

Ai Bl C1 0 0 Xl

0 AZ Bz Cz O O XZ

0 0 A B, 0 0

0 0 0 BN—l CN—l XN—l
[0 0 0 0 - A By | x
Northridge

Thomas Algorithm Il

» Gauss elimination upper triangular form
1°%-E=0 0 0 0 [x] [F
0 Iw-cE,0 0 0 x | IRl
0 0 I-=E,>~:- 0 0 X, 'F,!
0 0 0 1% 0 0 | i =it
0 0 0 0 1\\CE;:f XN FN—lE
00 0 0 -0 1 |x/| LR

ﬁl!)“l.‘ﬁ?l“ltliﬁﬁz‘ Have to find E; and F; 14

Thomas Algorithm I

* Forward computations
— Initial: Eg = — C, / By

.
B +AE.,

— At final point
Xy =

» Back substitute: x; = F, + Eix;.4

Cabiforni State Unhersity
Nnrthlridge

Fo =Dy /By
— Apply equations below fori=1,... N-1:
-G F = D -AFR,
1
B +AE.,

F = Dy — AR
" B E
v+ AEN

Other Boundary Conditions

» General condition a dT/dx + bT =c¢
—a=1, b=0 for Neumann (gradient given)
—a =0, b =1 for Dirichlet (value given)

— Write gradient using second order forward
(x = xg) or backward difference (x = xy)

— Combine with equation for first node in
from the boundary to eliminate term with
second node from boundary

— Result conforms to tridiagonal system

Calbiforni State University
Nnrthlridge

General Boundary Example

xy follow similar derivation

d
ao?i +boyozao

—3Yo+4y, -
2h

X=Xg

+ Add these (b"_ﬁ
two equations
eliminating y,

2h 2h

23 (x+2)a,
( "~ on jYO+ oh Y;

Cabiforni State Unhersity
Nnrthlridge

3a, 4a a
0)Y0+7OY1_*0y2 =Gy
[yo+(a2)y1+YZ ZOJ

1=Co

* Look at x = x, boundary; results for x =

Yo +heY, =6,

8y
2h

17
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General Boundary Example Il

+ Equation just derived is seen to give
correct Dirichlet result for a, = 0, by = 1

23, a+2
[bo_zir;)jyo"'%yl =Gy

+ Similar derivation at x = x gives
2a 2-a)a
[bN +Tr$ij +( Zh) N Yn1=Cy

» Equations shown here will work fora=0
or b =0, but at least one must be nonzero

Cal .’:|--_|N:|I|-I‘:||nr\'.- 18
Northridge
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Nonlinear Problems

Nonlinear Example

+ Shoot-and-try requires no special
procedures for nonlinear problems

* For finite difference or finite elements,
solve a linearized equation

— Example is pendulum equation d26/dt? =
(-g/l) sin® (usually solved with sin 6 ~ 0)
— Taylor series: sin 6 = sin 6, + [d(sin 6)/d6],

(6—86y) =sinB, + cos B, (6 — 6p)
— Replace sin 0 by linear result to iterate

« Start with d20/dt2 = (-g/l) sin 6

* Replace sin 0 by linearized series

« Write in iterative form with 6(m*") as new
iteration and use 6™ in nonlinear terms

* d20m*/dt2 = (-g/l) [sin 6(M + cos 6(M)
(6(m+1) — g(m)

* Define »? = g/l and rearrange
d20M /g2 + 2001 cos O = —a? [sin O —

06Mcos OM] =r

Nonlinear Example |l

Nonlinear Example IlI

« Convert d20(m*1)/dt2 + »20(m*1) cos O(M =
r to (linear) finite-difference form in 6(m*+1)
e_(m+1) + 6("1—*—1) _ 26_(m+1)
1— ]

i+1 + wZei(rl’HD _ r|

2
= szefm) cos6(™ —sin Gi(m)]
» Have tridiagonal system

0D + [w?h? — 2™ 4+ 61 —h2r,

i+1 i

Californin State [ niversity 21
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- Make initial guesses for 6
— Linear profile 00)(t) = 6(0) + [6(L) — 6(0)]t/T
« Find all nodal values for 6() using 6 to
compute the nonlinear terms
» Repeat the process until the differences
between iterations is good enough
— Compute residuals to test convergence

R = 9§T1+1) " [mzhz _ Zh(mm n emu) _ hzt‘i(m+1)

Calrforrsi Sate University 2
Northridge

Handling Boundary Conditions

Gradient and Mixed Boundaries

* We have used an example problem with
fixed (Dirichlet) boundary conditions

* We also mentioned gradient (Neumann)
and mixed boundary conditions.

If the dependent variable is u and the
initial and final nodes in a finite-
difference grid are 0 and N the fixed
boundary conditions are u, = C, at x =
Xp and uy = Cyat x = Xy

Californin State [ niversity 23
Northridge

* We use a directional derivative to
represent boundary gradients

du _ By +4u —wp
dx| _ 20x
du _ 3uy —4uy_qg +uy-—;
dx| 20x

» Couple this boundary condition equation
with first (last) possible finite difference
~equation at x = xg and x = xy

.’n".|N:|I|-|‘:||nY»'.- 24
Northridge
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Gradient Boundary at x = x

- Finite-difference equation for d2y/dx2 —

ay=0is (U, —2u; + u_,)/h2+a%y, =0

— Write this as uj,4 + au; + u.; = 0 where o =
h2a2 -2

— First (x = 0) equation is u, + au; +uy =0

— Gradient at x = 0: 2Axgy = -3uy + 4u; — U,

— Combine these to get 2Axg, = -3u, + 4u, —
u, = -3ug + 4u, + (auy + Up) = (4 + a)u;—2uy

— For TDMA solution combined equation [-2u,,

+ (4 + a)u, = 2Axg,] is first; previous first

.’n--.m:u.-l‘:u-m-_. 1 + + — N
Nnrlllrulgeequat'on'UZ au; + ug =0, is secondzs

Gradient Boundary at x = x

« Start with same finite-difference equation

Uy + ou; + U4 = 0 where o = h?a? - 2

— Last (x = xy) equation is uy + auy 4 + Uy, =0

— Gradient at x = xy: 2Axgy = 3uy — 4Uy.q + Uy

— Combine these to get 2Axgy = 3uy — 4uy.4 +
Un.z = 3uy — 4uy.g — (ol + Uy) = —(4 + a)uy
+ 2uy

— For TDMA solution combined equation [2uy —
(4 + a)uy.q = 2Axgy] is last; previous last
equation,uy_,tauy.4+ Uy = 0, is second-to-last

Calrforrsi Sate Unfversity 2
Northridge

Mixed Boundary Condition

* Mixed boundary condition relates
boundary gradient to boundary value of
dependent variable

+ Common example is convection heat
transfer boundary condition:

— At x = X —k(dT/dx) = h(T.. - T)

— At x = xy: —k(dT/dx) = h(T - T.,)

— Use forward/backward expression for
gradients

Californin State [ niversity 27
Northridge

Mixed Boundary Condition II

* For x = xy: —k(dT/dx) = h(T., — T) with
forward difference becomes

o —3ToHAT-T, _ _
kimx =h(T, — Tp)

» For x = x: =k(dT/dx) = h(T — T.,) with
backward difference becomes

3TN—4TN-1+TN-2 _
k 2Ax = h(Ty )

+ Combine with finite difference equations:
T,+al{+Tg=0/Ty,+aTy,4+Ty=0

Calrforrsi Sate University 28
Northridge

Mixed Boundary at x = x,

Finite-difference: T, + aT; + T; =0
—3Ty+4T, T

2T = (T, — To)

e —3Ty +4T; — T, = —2hAx(T, — Ty)/k

i _3T0 + 4‘T1 + aT1 + TO = —ZhAX(TOO - To)/k

c -2+ BT+ 4+ o1y = 2

* This becomes the first equation in the TDMA
algorithm and the first finite-difference equa-
tion above becomes the second

* Boundary: —k

Californin State [ niversity 29
Northridge
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Mixed Boundary at x = xy

Finite-difference: Ty, + aTy4 + Ty =0
3TN—4TN-1+TN-2 _ _
o h(Ty — Teo)
4 3TN - 4TN—1 + TN—2 = —ZhAx(TN - w)/k
L4 3TN - 4TN—1 - O(TN_1 - TN = —ZhAx(TN - oo)/k
. (2 + thAx) TN _ (4 + a)TN—1 _ ZhA;cToo

» This becomes the last equation in the TDMA
algorithm and the first finite-difference equa-
tion above becomes the second-to-last

» Boundary: —k

Calrforrsi Sate University 30
Northridge
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Eigenvalue Problems

when the number of boundary

the differential equation

— Example of this is solution for burning
velocity of a laminar flame

» Basic approach is to use finite-

* Numerical eigenvalue problems occur

conditions is greater than the order of

differences and transform problem into
a numerical matrix eigenvalue problem

31

Eigenvalue Problems |l

* Look at simple problem with known
solution as an example
— d2y/dx2 + A2y = 0 with y(0) = 0, y(1) = 0 and
folydx = 1
— Have three boundary conditions and only a
second order equation
— Nontrivial solution: y = A sin Ax with A = nxt
* Use second order finite differences
= (Vi1 * Vit — 2y)/n2 + 2%y, = 0

32

Eigenvalue Problem Il

* Finite-difference equations in matrix
form with o = A2h2; what is solution?

[~2+a 1 0 0 - 0 0
1 24 1 0 - 0 0
0 1 —24a 1 - 0 0
0 0 T : :
: : S0 o —24a 1
) 0 0 0 -« 1 —2+a)
Northridge

yN72

33

Eigenvalue Problem IV

+ Have matrix eigenvalue problem with o
= -A?h2 as the eigenvalue

-2 1 0 0 - 0 Oy Y,
1 -2 1.0 - 0 0|y, Y,
-2 1 -+ 0 0 Y, Vs
0 0 1 - : : N P Y I
: : : 0 -+ =2 1 |Yy Yoo
L0 0 0 0 - 1 —2fyy,] | Yna
Northridge “

Eigenvalue Problems V

+ Solve by numerical techniques for
finding matrix eigenvalues

* The accuracy of the eigenvalues
depends on the grid

there are grid nodes (not counting
boundary nodes)

Californin State [ niversity
Northridge

» Often need only one (lowest or highest)
» Can only find as many eigenvalues as

35

Example Eigenvalue Problem

« ODE: d?y/dx2 + k2y = 0 with y(0)=y(1)=0
* k is an unknown parameter (eigenvalue)
+ Solution is y = Asin(kx) where k = nnt

» Solve with Ax = 0.2

+ Finite difference equation is

Yi+1+Yi-1—2Yi 24, —
v +k%y; =0

Yit1 +¥ie1 — [2 = (Ax)%k?]y; = 0
» Write as matrix equation for Ax = 0.2

Calrforrsi Sate University 36
Northridge
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Example Eigenvalue Problem I

2 — 0.04k? -1 0 0 V1 0
-1 2 — 0.04k? -1 0 v2| _|o
0 -1 2 — 0.04k? - [YS} - lO
0 0 -1 2 —0.04k2] Y4 0

» This is eigenvalue equation (A —IL)y =0
* Here 1 = 0.04k?

Det(A —11) =0 is (2 — 0.04k?)* — 3(2 —
0.04k2)2+1=0

» Numerical solutions for k compared to

.exact values on next slide
Northridge
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Example Eigenvalue Problem Il

Eigenvalues Percent

Numerical Exact error
3.090 3.142 1.66%
5.878 6.283 6.45%
8.090 9.425 14.16%
9.511 12.566 24.31%

* Note larger errors for higher eigen-
values

. Joe D. Hoffman, Numerical methods for Engineers and
Caldhoes e Upersty Scientists, (2" ed), Marcel Dekker (2001), p. 482. 38
Northridge

MATLAB ODE Eigenvalues

* MATLAB has two solvers bvp4c and
bvp5c for solving boundary-value ODEs

+ MATLAB documentation shows the use
of bvp4c for computing the eigenvalue
of an ODE

» Example shows the computation of a single
eigenvalue as unknown parameter in the
solution based on initial guess of eigenvalue

Californin State [ niversity 39
Northridge
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