More Boundary-value Problems and Eigenvalue Problems in ODEs

More Boundary-value Problems and Eigenvalue Problems in ODEs

Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis

November 29, 2017

California State University Northridge

Review Last Lecture In a boundary-value problem, we have conditions set at two different locations A second-order ODE d²y/dx² = g(x, y, y'), needs two boundary conditions Simplest are y(0) = a and y(L) = b Can also have ady/dx+by = c at x = 0, L Two solution approaches: Shoot-and-try Finite differences

• Take an initial guess of derivative boundary conditions at x = 0 and use an initial-value routine to get y_(comp)(L) at the other boundary

- Compare the value of y_(comp)(L) found from the previous step to the boundary condition on y(L)
- Use the difference between $y_{(comp)}(L)$ and y(L) to iterate the initial value of $z = dy/dx|_{x=0}$ and continue until $y_{(comp)}(L) \approx y(L)$

Tridiagonal Matrix Equations											
Finite-difference equations in matrix											
fo	form with $\alpha = a^2h^2$ have tridiagonal form										
s c	ubic sr	oy mo Nine	ma	SA	gorithi	n useo	with	1			
$\left[-2+\alpha\right]$	1	0	0		0	0	$\begin{bmatrix} T_1 \end{bmatrix}$] [$-T_A$		
1	$-2+\alpha$	1	0		0	0	T_2		0		
0	1	$-2+\alpha$	1		0	0	T ₃		0		
0	0	1	·.		:	:	:	=	:		
1	÷	:		·.	÷	÷	1		:		
1	÷	:	0		$-2+\alpha$	1	T_{N-2}		0		
O Californis	0 a State University	0	0		1	$-2+\alpha$	T_{N-1}	10	$-T_B$		
Nor	thridge	Northridge									

Error and Error Order Get overall measure of error (like norm of a vector)

- Typically use maximum error (in absolute value) or root-mean-squared (RMS) error
- N = 10 has ε_{max} = 2.42x10⁻³ and ε_{RMS} = 1.83x10⁻³. For N = 100, ε_{max} = 2.41x10⁻⁵ and ε_{RMS} = 1.73x10⁻⁵.
- Second-order error in solution

$$\frac{1}{Northridge} \left| \varepsilon \right|_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \varepsilon_i^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (T_{exact} - T_{numerical})_{i_{11}}^2}$$

Thomas Algorithm									
• (General format for tridiagonal equations								
$\int B_0$	C_0	0	0		0	0	$\begin{bmatrix} x_0 \end{bmatrix}$	$\begin{bmatrix} D_0 \end{bmatrix}$	
A_1	B_1	C_1	0		0	0	<i>x</i> ₁	D_1	
0	A_2	B_2	C_2		0	0	x ₂	D_2	
0	0	A_3	B_3		0	0	:	= :	
1	÷	÷	÷	·.	÷	:	:		
0	0	0	0		B_{N-1}	C_{N-1}	x_{N-1}	D_{N-1}	
0	0	0	0		A_{N}	B_N	$\begin{bmatrix} x_N \end{bmatrix}$	D_N	
California State University 13									

More Boundary-value Problems and Eigenvalue Problems in ODEs

Gradient Boundary at $x = x_0$

- Finite-difference equation for $d^2y/dx^2 ay = 0$ is $(u_{i+1} 2u_i + u_{i-1})/h^2 + a^2u_i = 0$ - Write this as $u_{i+1} + \alpha u_i + u_{i-1} = 0$ where $\alpha = h^2a^2 - 2$
 - First (x = 0) equation is $u_2 + \alpha u_1 + u_0 = 0$
 - Gradient at x = 0: $2\Delta xg_0 = -3u_0 + 4u_1 u_2$
 - Combine these to get $2\Delta xg_0 = -3u_0 + 4u_1 u_2 = -3u_0 + 4u_1 + (\alpha u_1 + u_0) = (4 + \alpha)u_1 2u_0$
- For TDMA solution combined equation [-2 u_0
- + $(4 + \alpha)u_1 = 2\Delta xg_0$] is first; previous first Children start (herefy equation, $u_2 + au_1 + u_0 = 0$, is second 25

More Boundary-value Problems and **Eigenvalue Problems in ODEs**

32

Eigenvalue Problem III									
 Finite-difference equations in matrix form with α = λ²h²; what is solution? 									
Γ-	$2 + \alpha$	1	0	0		0	0		[0]
	1	$-2+\alpha$	1	0		0	0	<i>y</i> ₂	0
	0	1	$-2+\alpha$	1		0	0	<i>y</i> ₃	0
	0	0	1	·.		÷	÷	:	= :
	÷	÷	÷		·.	÷	÷	÷	
	÷	÷	:	0		$-2+\alpha$	1	y_{N-2}	0
L	0	0	0	0		1	$-2+\alpha$	_ y _{N-1} _	0
California State University 333									

	Eigenvalue Problem IV									
•	Hav = -λ ²	e ma ²h² a	trix s th	eige e eig	enva genv	lue p alue	roble	m with o	χ	
[-2	1	0	0	•••	0	0]	y ₁]	<i>y</i> ₁	
1	-2	1	0		0	0	y ₂		y_2	
0	1	-2	1		0	0	y ₃		<i>y</i> ₃	
0	0	1	۰.		÷	:	:	$=-\lambda^2 h^2$:	
:	÷	÷		٠.	÷	:	:		:	
:	÷	÷	0		-2	1	<i>y</i> _{<i>N</i>-2}		y_{N-2}	
0	0	0	0		1	-2	y_{N-1}		y_{N-1}	
California State University 34										

Eigenvalue Problems V

- · Solve by numerical techniques for finding matrix eigenvalues
- The accuracy of the eigenvalues depends on the grid
- Often need only one (lowest or highest)
- · Can only find as many eigenvalues as there are grid nodes (not counting boundary nodes)

35

```
Northridge
```

Example Eigenvalue Problem ODE: d²y/dx² + k²y = 0 with y(0)=y(1)=0 k is an unknown parameter (eigenvalue) • Solution is y = Asin(kx) where $k = n\pi$ • Solve with $\Delta x = 0.2$ · Finite difference equation is $\frac{y_{i+1} + y_{i-1} - 2y_i}{(\Delta x)^2} + k^2 y_i = 0$ $y_{i+1} + y_{i-1} - [2 - (\Delta x)^2 k^2]y_i = 0$ • Write as matrix equation for $\Delta x = 0.2$ 36 Northridge

Example Eigenvalue Problem III							
Eigenvalues Percent							
Numerical	Exact	error					
3.090	3.142	1.66%					
5.878	6.283	6.45%					
8.090	9.425	14.16%					
9.511	12.566	24.31%					
Note larger errors for higher eigen-							
California State University Northridge Joe D. Hoffman, Numerical methods for Engineers and Scientists, (2 nd ed), Marcel Dekker (2001), p. 482. 38							

MATLAB ODE Eigenvalues

- MATLAB has two solvers bvp4c and bvp5c for solving boundary-value ODEs
- MATLAB documentation shows the use of bvp4c for computing the eigenvalue of an ODE
 - <u>https://www.mathworks.com/help/matlab/re</u> <u>f/bvp4c.html</u>
- Example shows the computation of a single eigenvalue as unknown parameter in the solution based on initial guess of eigenvalue

39

California State University Northridge