
More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 1

More Boundary-value Problems
and Eigenvalue Problems in ODEs

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

November 29, 2017

2

Outline
• Review boundary-value problems

– Shoot and try
– Finite Differences
– Thomas Algorithm

• Other boundary values
– Gradient boundary values
– Mixed boundary values

• Eigenvalue problems
– Source of such problems
– Solution methods

Review Last Lecture
• In a boundary-value problem, we have

conditions set at two different locations
• A second-order ODE d2y/dx2 = g(x, y,

y’), needs two boundary conditions
– Simplest are y(0) = a and y(L) = b

– Can also have ady/dx+by = c at x = 0, L

• Two solution approaches:
– Shoot-and-try

– Finite differences

3

Shoot-and-Try Approach

• Take an initial guess of derivative boundary
conditions at x = 0 and use an initial-value
routine to get y(comp)(L) at the other
boundary

• Compare the value of y(comp)(L) found from
the previous step to the boundary condition
on y(L)

• Use the difference between y(comp)(L) and
y(L) to iterate the initial value of z =
dy/dx|x=0 and continue until y(comp)(L)  y(L)

4

Shoot-and-Try Example

• Solve d2y/dx2 +16sin(y2) = 0 with y = 1
at x = 0 and x = L = 1

• Must find pair of first order equations
– Set dy/dx = z as one ODE

– Original ODE becomes dz/dx = –16sin(y2)

– We know y(0) = 1, but we need z(0) guess
z(0)(0) = [y(L) – y(0)]/L = (0 – 1)/1 = –1

• This z(0)(0) gives y(1) = –0.6824 (RK4, h = .01)

• Try z(1)(0) = [y(L) – y(0)(L) – y(0)]/L = [1 –
(–0.6824) – 0] = –0.3176

5
E(0) = y(0)(L) – y(L) = –0.6824 – 0 = -0.6824

6

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 2

Shoot-and-Try Linear ODEs

• For a linear ODE the solution can be
found on the third iteration
– Complete two shoot-and-try solutions,

y(0)(x) and y(1)(x) and for two initial
guesses, z(0)(x0) and z(1)(x0)

7 8

Finite Difference Approach
• Define uniform or non-uniform grid;

uniform is easier and has higher order
truncation error; note: h = (xN – x0)/N

●-----●--------●-------------●~ ~●-------●---●
x0 x1 x2 x3 xN-2 xN-1 xN

• At each node write finite-difference
equivalent to differential equation

• Handle boundary conditions at x0 and xN
(simplest if y0 = y(0) and yN = y(L) given,
but can have gradient boundaries)

9

Finite-Difference Example

• Solve d2T/dx2 + a2T = 0

• Finite difference equation at node i

• [d2T/dx2 + a2T]i = (Ti+1 + Ti-1 – 2Ti)/h2 +
a2Ti + O(h2) = 0

• Ignore truncation error and get finite-
difference equation system

• Ti+1 + Ti-1 – 2Ti + h2a2Ti = 0

• Have N+1 nodes numbered from 0 to N
with boundary conditions at 0 and N

Ignore truncation error

10

Tridiagonal Matrix Equations







































































































B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1































• Finite-difference equations in matrix
form with  = a2h2 have tridiagonal form
solved by Thomas Algorithm used with
cubic spline

11

Error and Error Order
• Get overall measure of error (like norm

of a vector)
• Typically use maximum error (in

absolute value) or root-mean-squared
(RMS) error

• N = 10 has max = 2.42x10-3 and RMS =
1.83x10-3. For N = 100, max = 2.41x10-5

and RMS = 1.73x10-5.
• Second-order error in solution





N

i
inumericalexact

N

i
iRMS

TT
NN 1

2

1

2)(
11 

12

Boundary Gradients
• Use second-order derivative expressions

h

TTT
k

dx

dT
kq

xx 2

43 210
0

0






h

TTT
k

dx

dT
kq NNN

xx
N

N
2

43 21 






x -qexact/k h -q/k Error

0 2.1995 .1 2.2357 .03618

0 2.1995 .01 2.1999 .00036

1 -.9153 .1 -.9332 .01786

1 -.9153 .01 -.9155 .00021

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

Thomas Algorithm

























































































N

N

N

N

NN

NN

D

D

D

D

D

x

x

x

x

x

BA

CB

BA

CBA

CBA

CB

1

2

1

0

1

2

1

0

11

33

222

111

00

0000

0000

0000

000

000

0000





















• General format for tridiagonal equations

14

Thomas Algorithm II
































































































N

N

N

NN

F

F

F

F

F

x

x

x

x

x

E

E

E

E

1

2

1

0

1

2

1

0

1

2

1

0

100000

10000

001000

00100

00010

00001





















• Gauss elimination upper triangular form

Have to find Ei and Fi

15

Thomas Algorithm III
• Forward computations

– Initial: E0 = – C0 / B0 F0 = D0 / B0

– Apply equations below for i = 1,… N-1:

– At final point

1

1

1 



 







iii

iii
i

iii

i
i EAB

FAD
F

EAB

C
E

1

1









NNN

NNN
NN EAB

FAD
Fx

• Back substitute: xi = Fi + Eixi+1

16

Other Boundary Conditions

• General condition a dT/dx + bT = c
– a = 1, b = 0 for Neumann (gradient given)

– a = 0, b = 1 for Dirichlet (value given)

– Write gradient using second order forward
(x = x0) or backward difference (x = xN)

– Combine with equation for first node in
from the boundary to eliminate term with
second node from boundary

– Result conforms to tridiagonal system

17

General Boundary Example

• Look at x = x0 boundary; results for x =
xN follow similar derivation

000
210

0000 2

43

0

cyb
h

yyy
ayb

dx

dy
a

xx







02
0

1
0

0
0

0 22

4

2

3
cy

h

a
y

h

a
y

h

a
b 






 

h

a
yyy

2
0)2(0

210 







 

• Add these
two equations
eliminating y2

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b 









 



18

General Boundary Example II

• Equation just derived is seen to give
correct Dirichlet result for a0 = 0, b0 = 1

NN
N

N
N

N cy
h

a
y

h

a
b 









  12

)2(

2

2 

• Similar derivation at x = xN gives

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b 









 



• Equations shown here will work for a = 0
or b = 0, but at least one must be nonzero

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Nonlinear Problems

• Shoot-and-try requires no special
procedures for nonlinear problems

• For finite difference or finite elements,
solve a linearized equation
– Example is pendulum equation d2/dt2 =

(-g/l) sin  (usually solved with sin   )

– Taylor series: sin  = sin 0 + [d(sin )/d]0
( – 0) = sin 0 + cos 0 ( – 0)

– Replace sin  by linear result to iterate

20

Nonlinear Example

• Start with d2/dt2 = (-g/l) sin 
• Replace sin  by linearized series

• Write in iterative form with (m+1) as new
iteration and use (m) in nonlinear terms

• d2(m+1)/dt2 = (-g/l) [sin (m) + cos (m)

((m+1) – (m))

• Define 2 = g/l and rearrange
d2(m+1)/dt2 + 2(m+1) cos (m) = –2 [sin (m) –
(m)cos (m)] = r

21

Nonlinear Example II

• Convert d2(m+1)/dt2 + 2(m+1) cos (m) =
r to (linear) finite-difference form in (m+1)

 )()()(2

)1(2
2

)1()1(
1

)1(
1

sincos

2

m
i

m
i

m
ii

i
m

i

m
i

m
i

m
i

r

r
h




 







• Have tridiagonal system

  i
m

i
m

i
m

i rhh 2)1(
1

)1(22)1(
1 2  






22

Nonlinear Example III

• Make initial guesses for (0)

– Linear profile (0)(t) = (0) + [(L) – (0)]t/T

• Find all nodal values for (1) using (0) to
compute the nonlinear terms

• Repeat the process until the differences
between iterations is good enough
– Compute residuals to test convergence

 )1(2)1(
1

)1(22)1(
1 2 




  m
i

m
i

m
i

m
ii rhhR

Handling Boundary Conditions

• We have used an example problem with
fixed (Dirichlet) boundary conditions

• We also mentioned gradient (Neumann)
and mixed boundary conditions.

• If the dependent variable is u and the
initial and final nodes in a finite-
difference grid are 0 and N the fixed
boundary conditions are u0 = C0 at x =
x0 and uN = CN at x = xN

23

Gradient and Mixed Boundaries

• We use a directional derivative to
represent boundary gradients

ݑ݀
ݔ݀
቉
௫ୀ଴

ൌ
െ3ݑ଴ ൅ ଵݑ4 െ ଶݑ

ݔ∆2
ݑ݀
ݔ݀
቉
௫ୀே

ൌ
ேݑ3 െ ேିଵݑ4 ൅ ேିଶݑ

ݔ∆2

• Couple this boundary condition equation
with first (last) possible finite difference
equation at x = x0 and x = xN

24

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 5

Gradient Boundary at x = x0

• Finite-difference equation for d2y/dx2 –
ay = 0 is (ui+1 – 2ui + ui-1)/h2 + a2ui = 0
– Write this as ui+1 + ui + ui-1 = 0 where  =

h2a2 – 2

– First (x = 0) equation is u2 + u1 + u0 = 0

– Gradient at x = 0: 2xg0 = -3u0 + 4u1 – u2

– Combine these to get 2xg0 = -3u0 + 4u1 –
u2 = -3u0 + 4u1 + (u1 + u0) = (4 + )u1–2u0

– For TDMA solution combined equation [-2u0

+ (4 + )u1 = 2xg0] is first; previous first
25equation,u2 + au1 + u0 = 0, is second

Gradient Boundary at x = xN

• Start with same finite-difference equation
ui+1 + ui + ui-1 = 0 where  = h2a2 – 2
– Last (x = xN) equation is uN + uN-1 + uN-2 = 0

– Gradient at x = xN: 2xgN = 3uN – 4uN-1 + uN-2

– Combine these to get 2xgN = 3uN – 4uN-1 +
uN-2 = 3uN – 4uN-1 – (uN-1 + uN) = –(4 + )uN-1

+ 2uN

– For TDMA solution combined equation [2uN –
(4 + )uN-1 = 2xgN] is last; previous last
equation,uN-2+uN-1+ uN = 0, is second-to-last

26

Mixed Boundary Condition

• Mixed boundary condition relates
boundary gradient to boundary value of
dependent variable

• Common example is convection heat
transfer boundary condition:
– At x = x0: –k(dT/dx) = h(T∞ – T)

– At x = xN: –k(dT/dx) = h(T – T∞)

– Use forward/backward expression for
gradients

27

Mixed Boundary Condition II

• For x = x0: –k(dT/dx) = h(T∞ – T) with
forward difference becomes

െ݇ ିଷ బ்ାସ భ்ି మ்

ଶ∆௫
ൌ h ஶܶ െ ଴ܶ

• For x = xN: –k(dT/dx) = h(T – T∞) with
backward difference becomes

െ ݇ ଷ்ಿିସ்ಿషభା்ಿషమ
ଶ∆௫

ൌ h ேܶ െ ஶܶ

• Combine with finite difference equations:
T2 + T1 + T0 = 0 / TN-2 + TN-1 + TN = 0

28

Mixed Boundary at x = x0

• Finite-difference: T2 + T1 + T0 = 0

• Boundary: െ݇ ିଷ బ்ାସ భ்ି మ்

ଶ∆௫
ൌ h ஶܶ െ ଴ܶ

• െ3 ଴ܶ ൅ 4 ଵܶ െ ଶܶ ൌ െ2݄∆ݔ ஶܶ െ ଴ܶ ݇⁄
• െ3 ଴ܶ ൅ 4 ଵܶ ൅ ߙ ଵܶ ൅ ଴ܶ ൌ െ2݄∆ݔ ஶܶ െ ଴ܶ ݇⁄

• െ 2 ൅ ଶ௛∆௫

௞ ଴ܶ ൅ 4 ൅ ߙ ଵܶ ൌ
ିଶ௛∆௫ ಮ்

௞

• This becomes the first equation in the TDMA
algorithm and the first finite-difference equa-
tion above becomes the second

29

Mixed Boundary at x = xN

• Finite-difference: TN-2 + TN-1 + TN = 0

• Boundary: െ݇ ଷ்ಿିସ்ಿషభା்ಿషమ
ଶ∆௫

ൌ h ேܶ െ ஶܶ

• 3 ேܶ െ 4 ேܶିଵ ൅ ேܶିଶ ൌ െ2݄∆ݔ ேܶ െ ஶܶ ݇⁄
• 3 ேܶ െ 4 ேܶିଵ െ ߙ ேܶିଵ െ ேܶ ൌ െ2݄∆ݔ ேܶ െ ஶܶ ݇⁄

• 2 ൅ ଶ௛∆௫

௞ ேܶ െ 4 ൅ ߙ ேܶିଵ ൌ
ଶ௛∆௫ ಮ்

௞

• This becomes the last equation in the TDMA
algorithm and the first finite-difference equa-
tion above becomes the second-to-last

30

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

Eigenvalue Problems

• Numerical eigenvalue problems occur
when the number of boundary
conditions is greater than the order of
the differential equation
– Example of this is solution for burning

velocity of a laminar flame

• Basic approach is to use finite-
differences and transform problem into
a numerical matrix eigenvalue problem

32

Eigenvalue Problems II

• Look at simple problem with known
solution as an example
– d2y/dx2 + 2y = 0 with y(0) = 0, y(1) = 0 and
01ydx = 1

– Have three boundary conditions and only a
second order equation

– Nontrivial solution: y = A sin x with  = n

• Use second order finite differences
– (yi+1 + yi-1 – 2yi)/h2 + 2yi = 0

33

Eigenvalue Problem III



































































































0

0

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1























N

N

y

y

y

y

y









• Finite-difference equations in matrix
form with  = 2h2; what is solution?

34

Eigenvalue Problem IV







































































































1

2

3

2

1

22

1

2

3

2

1

210000

120

100

001210

000121

000012

N

N

N

N

y

y

y

y

y

h

y

y

y

y

y

























• Have matrix eigenvalue problem with 
= -2h2 as the eigenvalue

35

Eigenvalue Problems V

• Solve by numerical techniques for
finding matrix eigenvalues

• The accuracy of the eigenvalues
depends on the grid

• Often need only one (lowest or highest)

• Can only find as many eigenvalues as
there are grid nodes (not counting
boundary nodes)

36

Example Eigenvalue Problem

• ODE: d2y/dx2 + k2y = 0 with y(0)=y(1)=0

• k is an unknown parameter (eigenvalue)

• Solution is y = Asin(kx) where k = n
• Solve with x = 0.2

• Finite difference equation is
௬೔శభା୷౟షభିଶ୷౟

୼୶ మ ൅ ݇ଶy୧ ൌ 0

௜ାଵݕ ൅ y୧ିଵ െ 2 െ Δݔ ଶ݇ଶ y୧ ൌ 0

• Write as matrix equation for x = 0.2

More Boundary-value Problems and
Eigenvalue Problems in ODEs

November 29, 2017

ME 501A Seminar in Engineering
Analysis Page 7

37

Example Eigenvalue Problem II

• This is eigenvalue equation (A – I)y = 0

• Here  = 0.04k2

• Det(A – I) = 0 is (2 – 0.04k2)4 – 3(2 –
0.04k2)2 +1 = 0

• Numerical solutions for k compared to
exact values on next slide

2 െ 0.04kଶ െ1
െ1 2 െ 0.04kଶ

0																	 0
െ1																				 0

0											 				െ1
0											 								0

2 െ 0.04kଶ െ1
െ1 2 െ 0.04kଶ

ଵݕ
yଶ
yଷ
yସ

ൌ

0
0
0
0

38

Example Eigenvalue Problem III

Eigenvalues Percent

Numerical Exact error

3.090 3.142 1.66%

5.878 6.283 6.45%

8.090 9.425 14.16%

9.511 12.566 24.31%

Joe D. Hoffman, Numerical methods for Engineers and
Scientists, (2nd ed), Marcel Dekker (2001), p. 482.

• Note larger errors for higher eigen-
values

MATLAB ODE Eigenvalues

• MATLAB has two solvers bvp4c and
bvp5c for solving boundary-value ODEs

• MATLAB documentation shows the use
of bvp4c for computing the eigenvalue
of an ODE
– https://www.mathworks.com/help/matlab/re

f/bvp4c.html
• Example shows the computation of a single

eigenvalue as unknown parameter in the
solution based on initial guess of eigenvalue

39

